师资队伍

教师名录

陈臻

船舶与海洋工程系

电子邮件:zhen.chen@sjtu.edu.cn
通讯地址:上海市 闵行区 东川路800号 上海交通大学 木兰船建楼B501

副教授,博士生导师,国家级青年人才

Hi, there! This is Dr. CHEN Zhen. I am an Associate Professor in School of Naval Architecture, Ocean and Civil Engineering @ Shanghai Jiao Tong University. If you are interested in my research and have solid education background in mathematics, mechanics or ocean engineering, you are welcome to join my research group. For more information, feel free to contact me at "zhen.chen@sjtu.edu.cn". 


工作经历(Research Experience):

2022.02 - 至今,上海交通大学 船舶海洋与建筑工程学院    长聘教轨副教授(Associate Professor @ Shanghai Jiao Tong University)

2021.07 - 2022.01,新加坡国立大学 机械工程系    博士后研究员(Research Fellow @ National University of Singapore)

2018.08 - 2021.07,新加坡国立大学 Temasek实验室    研究科学家(Research Scientist @ National University of Singapore)


教育经历(Education Background):

2014.08 - 2018.08,新加坡国立大学 机械工程系    博士(Ph.D. in Mechanical Engineering, National University of Singapore)

2011.09 - 2014.06,大连理工大学 船舶工程学院    硕士(M.Eng. in Naval Architecture and Marine Engineering, Dalian University of Technology)

2007.09 - 2011.06,大连理工大学 船舶工程学院    本科(B.Eng. in Naval Architecture and Marine Engineering, Dalian University of Technology)



1)计算流体力学算法与应用

2)基于Boltzmann方程的动理学计算方法

3)无网格方法:光滑粒子动力学(SPH)方法

4)多相流和相变问题的数值模拟

5)多尺度流动的数值模拟

6)流-固耦合

7)高性能计算和数值模拟平台开发


每年招收1名博士、2名硕士,常年招聘博士后。详询:zhen.chen@sjtu.edu.cn



Research Interests:


My research has revolved around the computational mechanics and its application to engineering problems.  Empowered by rigorous mathematical derivations, novel computational theories and high-performance computing techniques, the computational mechanics is now actively engaged in revealing physical mechanisms and assisting engineering designs.  The vitality of the computational mechanics community relies on an old “promise”: to be a cost-effective alternative to the physical experimental facilities (e.g., wave basin, wind tunnel, etc.).  It would be an exciting journey to deliver this commitment and to unleash the real power of computational mechanics.  I am looking forward to working with talented students, research fellows and industry cooperators to make our contributions.

Research interests include but are not limited to: 

  1. 1) Computational fluid dynamics: theory and applications; 

  2. 2) Kinetic theory-based methods; 

  3. 3) Meshfree methods; 

  4. 4) Multiphase flows and phase-change process; 

  5. 5) Multiscale modelling; 

  6. 6) Fluid-structure interaction; 

  7. 7) Digital twin and high-performance computing.


2023.07 - 至今,中国造船工程学会青年工作委员会委员

2023.07 - 至今,《应用数学与力学》青年编委会委员

2023.03 - 至今,《Advances in Aerodynamics》、《空气动力学学报》、《实验流体力学》三刊青年编委会委员

2022,《Entropy》特刊“Kinetic Theory-based Methods in Fluid Dynamics”客座编辑

2023.01 - 2025.12,国家级青年人才项目,主持

2023.01 - 2025.12,国家自然科学基金青年项目,主持

2023.01 - 2024.12,上海交通大学“深蓝计划”配套项目,主持

谷歌学者网页:https://scholar.google.com/citations?user=EeaInD0AAAAJ&hl=en

ResearchGate主页:https://www.researchgate.net/profile/Zhen-Chen-64



学术专著(Monographs):

Zhen Chen, Chang Shu. “Simplified and Highly Stable Lattice Boltzmann Method: Theory and Applications”. World Scientific, 2020.

Liming Yang, Yan Wang, Zhen Chen, Chang Shu. “Lattice Boltzmann and Gas Kinetic Flux Solvers: Theory and Applications”. World Scientific, 2020.


期刊论文(Journal articles):

[48] Z. Chen, C. Shu, Y.Y. Liu, L.Q. Zhang, Z.L. Zhang, Z.Y. Yuan. Isotherm-evolution-based interface tracking algorithm for modelling temperature-driven solid-liquid phase-change in multiphase flows. International Journal of Thermal Sciences, 2022; 177:107541. 

[47] Z.F. Meng, Z. Chen, B.C. Khoo, A.M. Zhang. Long-time prediction of sea wave trains by LSTM machine learning method. Ocean Engineering, 2022; 262:112213. 

[46] Y.Y. Liu, Z. Chen, C. Shu, S.C. Chew, B.C. Khoo, X. Zhao. Application of a variational hybrid quantum-classical algorithm to heat conduction equation and analysis of time complexity. Physics of Fluids, 2022; in press. 

[45] Z. Chen, C. Shu, Y.Y. Liu, L.Q. Zhang. Ternary phase-field simplified multiphase lattice Boltzmann method and its application to compound droplet dynamics on solid surface in shear flow. Physical Review Fluids 2021; 6(9): 094304.

[44] Z. Chen, C. Shu, L.M. Yang, X. Zhao, N.Y. Liu. Phase-field-simplified lattice Boltzmann method for modeling solid-liquid phase change. Physical Review E, 2021; 103(2):023308.

[43] Z. Chen, C. Shu, L.M. Yang, X. Zhao, N.Y. Liu, Y.Y. Liu. Mixed convection between rotating sphere and concentric cubical enclosure. Physics of Fluids, 2021; 33(1):013605.

[42] X. Zhao, Z. Chen, L.M. Yang, N.Y. Liu, C. Shu. Efficient boundary condition-enforced immersed boundary method for incompressible flows with moving boundaries. Journal of Computational Physics, 2021; 441:110425.

[41] L.M. Yang, C. Shu, Z. Chen, Y.Y. Liu, J. Wu. Gas kinetic flux solver based high-order finite-volume method for simulation of two-dimensional compressible flows. Physical Review E, 2021; 104(1): 015305. 

[40] L.M. Yang, C. Shu, Z. Chen, Y. Wang, G.X. Hou. A simplified lattice Boltzmann flux solver for multiphase flows with large density ratio. International Journal for Numerical Methods in Fluids,2021; 93(5):1895-1912.

[39] B. Harikrishnan, Z. Chen, C. Shu. A New Explicit Immersed Boundary Method for Simulation of Fluid-Solid Interactions. Advances in Applied Mathematics and Mechanics, 2021; 13(2):261-284.

[38] L.M. Yang, C. Shu, Z. Chen, G.X. Hou, Y. Wang. An improved multiphase lattice Boltzmann flux solver for the simulation of incompressible flow with large density ratio and complex interface. Physics of Fluids, 2021; 33(3):033306.

[37] L.M. Yang, C. Shu, Z. Chen, Y.Y. Liu, Y. Wang, X. Shen. High-order gas kinetic flux solver for simulation of two dimensional incompressible flows. Physics of Fluids, 2021; 33(1):017107.

[36] Z. Chen, C. Shu, Y. Wang, L.M. Yang. Oblique Drop Impact on Thin Film: Splashing Dynamics at Moderate Impingement Angles. Physics of Fluids, 2020; 32(3): 033303. (Editor’s pick

[35] Z. Chen, C. Shu, L.M. Yang, X. Zhao, N.Y. Liu. Immersed Boundary – Simplified Thermal Lattice Boltzmann Method for Incompressible Thermal Flows. Physics of Fluids, 2020; 32(1): 013605. (Editor’s pick

[34] Z. Chen & C. Shu, On Numerical Diffusion of Simplified Lattice Boltzmann Method. International Journal for Numerical Methods in Fluids, 2020; 92: 1198-1211.

[33] Z. Chen & C. Shu. Simplified Lattice Boltzmann Method for non-Newtonian Power-law Fluid Flows. International Journal for Numerical Methods in Fluids, 2020; 92(1): 38-54. 

[32] L.Q. Zhang, Z. Chen, L.M. Yang, C. Shu. Double Distribution Function-based Discrete Gas Kinetic Scheme for Viscous Incompressible and Compressible Flows. Journal of Computational Physics, 2020; 412: 109428.

[31] X. Zhao, C. Wu, Z. Chen, L.M. Yang, C. Shu. Reduced order modeling-based discrete unified gas kinetic scheme for rarefied gas flows. Physics of Fluids, 2020; 32: 067108. (Editor’s Pick)

[30] L.M. Yang, C. Shu, Z. Chen, J. Wu. Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary. Physical Review E, 2020; 101(5): 053309.

[29] Z. Chen, C. Shu, L.Q. Zhang. A simplified axisymmetric lattice Boltzmann method for incompressible swirling and rotating flows. Physics of Fluids, 2019; 31(2): 023605.

[28] B.X. Zheng, Z. Chen*,A multiphase smoothed particle hydrodynamics model with lower numerical diffusion. Journal of Computational Physics, 2019; 382: 177-201.

[27] L.Q. Zhang, Z. Chen*, L.M. Yang, M.Q. Zhang. An improved axisymmetric lattice boltzmann flux solver for axisymmetric isothermal/thermal flows. International Journal for Numerical Methods in Fluids, 2019; 90(12): 632-650.

[26] L.Q. Zhang, Z. Chen, C. Shu, M.Q. Zhang. A Kinetic Theory-based axisymmetric lattice boltzmann flux solver for isothermal and thermal swirling flows. Journal of Computational Physics, 2019; 392: 141-160. 

[25] L.Q. Zhang, Z. Chen, L.M. Yang, C. Shu. An improved discrete gas-kinetic scheme for two-dimensional viscous incompressible and compressible flows. Physics of Fluids, 2019; 31: 066103.

[24] Z.Y. Zhang, J. Du, Z. Wei, Z. Chen, C. Shu, Z. Wang, M. Li, Numerical investigation of adhesion dynamics of a deformable cell pair on an adhesive substrate in shear flow. Physical Review E, 2019: 100(3): 033111.

[23] Z.W. Cai, Z. Zong, Z. Chen, L. Zhou, C. Tian. Multiphase Godunov-Type Smoothed Particle Hydrodynamics Method with Approximate Riemann Solvers. International Journal of Computational Methods, 2019; 16 (2): 1846010.

[22] Z. Chen, C. Shu, D. Tan, X.D. Niu, Q.Z. Li. Simplified Multiphase Lattice Boltzmann Method for Simulating Multiphase Flows with Large Density Ratios and Complex Interfaces. Physical Review E, 2018; 98(6): 063314.

[21] Z. Chen, C. Shu, D. Tan. High-order simplified thermal lattice Boltzmann method for incompressible thermal flows. International Journal of Heat and Mass Transfer, 2018; 127: 1-16.

[20] Z. Chen, C. Shu, D. Tan. Highly accurate simplified lattice Boltzmann method. Physics of Fluids, 2018; 30 (10): 103605. (Editor’s pick)

[19] Z. Chen, C. Shu, D. Tan, C. Wu. On Improvements of Simplified and Highly Stable Lattice Boltzmann Method: Formulations, Boundary Treatment, and Stability Analysis. International Journal for Numerical Methods in Fluids, 2018; 87 (4): 161-179.

[18] Z. Chen, C. Shu, D. Tan. Immersed Boundary-Simplified Lattice Boltzmann Method for Incompressible Viscous Flows. Physics of Fluids, 2018; 30 (5): 053601.

[17] Z. Chen, C. Shu, D. Tan. The Simplified Lattice Boltzmann Method on Non-uniform Meshes. Communications in Computational Physics, 2018; 23 (4): 1131-1149.

[16] L.M. Yang, Z. Chen, C. Shu, W.M. Yang, L.Q. Zhang. Improved fully implicit discrete-velocity method for efficient simulation of flows in all flow regimes. Physical Review E, 2018; 98(6): 063313. 

[15] L.M. Yang, C. Shu, W.M. Yang, Z. Chen, H. Dong. An improved discrete velocity method (DVM) for efficient simulation of flows in all flow regimes. Physics of Fluids, 2018; 30 (6): 062005.

[14] L. Zou, G.X. Zhu, Z. Chen, Y.G. Pei, Z. Zong. Numerical Investigation on the Water Entry of Convex Objects Using a Multiphase Smoothed Particle Hydrodynamics Model. International Journal of Computational Methods, 2018; 15 (02): 1850008.

[13] C. Wu, B. Shi, C. Shu, Z. Chen. Third-order Discrete Unified Gas Kinetic Scheme for Continuum and Rarefied Flows: Low-speed Isothermal Case. Physical Review E, 2018; 97 (2): 023306.

[12] G.X. Zhu, L. Zou, Z. Chen, A.M. Wang, M.B. Liu. An Improved SPH Model for Multiphase Flows with Large Density Ratios. International Journal for Numerical Methods in Fluids, 2018; 86 (2), 167-184.

[11] Z. Chen, C. Shu, D. Tan. Three-dimensional simplified and unconditionally stable lattice Boltzmann method for incompressible isothermal and thermal flows. Physics of Fluids, 2017; 29 (5): 053601.

[10] Z. Chen, C. Shu, D. Tan. A Truly Second-order and Unconditionally Stable Thermal Lattice Boltzmann Method. Applied Sciences, 2017; 7 (3): 277.

[9] Z. Chen, C. Shu, D. Tan. A Simplified Thermal Lattice Boltzmann Method without Evolution of Distribution Function. International Journal of Heat and Mass Transfer, 2017; 105: 741-757.

[8] Z. Chen, C. Shu, Y. Wang, L. M. Yang, D. Tan. A Simplified Lattice Boltzmann Method without Evolution of Distribution Function. Advances in Applied Mathematics and Mechanics, 2017; 9 (1):1-22.

[7] H.Z. Yuan, Z. Chen, C. Shu, Y. Wang, X.D. Niu, S. Shu. A free energy-based surface tension force model for simulation of multiphase flows by level-set method. Journal of Computational Physics, 2017; 345, 404-426.

[6] Y. Sun, C. Shu, Y. Wang, C.J. Teo, Z. Chen. An Immersed Boundary-Gas kinetic Flux Solver for Simulation of Incompressible Flows. Computers & Fluids, 2017; 142, 45-56.

[5] L. Zhou, Z. W. Cai, Z. Zong, Z. Chen*. An SPH pressure correction algorithm for multiphase flows with large density ratio. International Journal for Numerical Methods in Fluids, 2016; 81: 765-788.

[4] Z. Chen, Z. Zong, M.B. Liu, L. Zou, H.T. Li, C. Shu. An SPH Model for Multiphase Flows with Complex Interfaces and Large Density Differences. Journal of Computational Physics, 2015; 283:169-188.

[3Z. Chen, Z. Zong, M.B. Liu, H.T. Li. A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows. International Journal for Numerical Methods in Fluids, 2013; 73/9: 813-829.

[2] H.T. Li, J. Li, Z. Zong, Z. Chen. Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation. Ocean Engineering, 2013, 82: 20-31.

[1] Z. Chen, Z. Zong, H.T. Li, J. Li. An investigation into the pressure on solid walls in 2D sloshing using SPH method. Ocean Engineering, 2013; 59: 129-141.






NAOE2304 《船舶流体力学I》

NAOE3340 《计算流体力学基础》

2022,上海交通大学“小米青年学者”

2021,国家级青年人才项目

2021,上海市海外高层次人才引进计划

2017,教育部自然科学一等奖(排名:7/7)

版权所有 © 2014 上海交通大学船舶海洋与建筑工程学院 沪交ICP备05053   流量统计