师资队伍

教师名录

张显涛

船舶与海洋工程系

办公电话:021-34207238
电子邮件:zhxt@sjtu.edu.cn; zhxter@outlook.com
通讯地址:上海市闵行区东川路800号木兰船建大楼B315
个人主页:https://www.researchgate.net/profile/Xiantao_Zhang;https://scholar.google.com/citations?user=GmvU9J7nfX8C&hl=en

博士,助理教授,硕士/博士生导师

工作经历:
2018年12月-至今, 上海交通大学,长聘教轨助理教授

教育经历:
2015年-2018年, 西澳大利亚大学,海洋工程专业,博士
2012年-2015年,上海交通大学,海洋工程专业,硕士
2008年-2012年,上海交通大学,海洋工程专业,学士

主要从事海洋装备流固耦合动力学相关研究,聚焦在:

[1] 海洋波浪能装备,研究内容包括:水动力分析,控制算法与应用,非线性能量捕获机制,模型与实尺度试验技术研究等。

[2] 大型浮式结构物 (大型浮体、海上光伏、深远海渔业养殖装备等),研究内容包括:水弹性理论、动力响应理论与实验技术、智能装备技术等。

[3] 基于波动鳍推进的智能仿生海洋机器人,研究内容包括:波动鳍水动力特性与推进效率,智能感知,路径规划与避障,机器学习等。


国际SCI期刊《Water》编委

《Frontiers in Energy Research》审稿编委

《船舶工程》编委

中国造船工程学会船舶力学学术委员会会员

上海市船舶与海洋工程会员

担任20多份SCI期刊审稿人,https://publons.com/researcher/1174390/xiantao-zhang/

       包括:海洋工程类期刊(Ocean Engineering, Applied Ocean Research, Journal of Fluids and Structures, Marine Structures, Engineering Structures, Journal of Port, Waterway, Coastal and Ocean Engineering, China Ocean Engineering, International Journal of Offshore and Polar Engineering, Ships and Offshore Structures, Journal of Marine Science and Engineering, Journal of Ocean Engineering and Science等),海洋可再生能源类期刊(Applied Energy, Energy,Renewable Energy, Renewable and Sustainable Energy Reviews, IEEE transactions on Sustainable Energy, IEEE Access, Energies, Water, Sustainability等),力学类期刊(Nonlinear Dynamics)等。

国家自然科学基金评审专家,海南省自然科学基金评审专家,国家学位论文评审专家。

纵向类项目

      [11] 2023.01-2025.12, 国家自然科学基金,《基于适应型双稳态机制的浮子式波浪能装置高效俘能特性研究》,负责人

      [10] 2022.06-2024.06,海南省三亚崖州湾科技城自然科学基金联合项目《极端波浪与流作用下深远海养殖装备立柱-网衣组合结构流固耦合动力特性研究》,导师负责人

      [9] 2019.10-2021.9, 上海市浦江人才计划项目, 《极端海况下深水船型浮式结构物甲板上浪机理与砰击特性研究》,负责人

      [8] 2020.9-2023.9, 海南省崖州湾科技城管理局重点项目,《深远海浮子式波浪能发电装置高效俘能技术与复杂动力特性研究》,负责人

      [7] 2020.12-2023.12, 海南省自然科学基金,《极端波浪下计及越浪的大型浮体动力响应分析理论与试验》,负责人

      [6] 2020.8-2022.7,海岸和近海工程国家重点实验室开放基金项目,《极端波浪下计及越浪效应的超大型浮体非线性动力响应特性研究》,负责人

      [5] 2020.7-2021.3,海洋工程国家重点实验室自主研究课题,《深远海超大型浮式基地非线性动力响应预报研究》,负责人

      [4] 2018.12-2021.12, 上海交通大学长聘教轨助理教授科研启动项目,《新型适应型双稳态浮子式波浪能装置关键问题研究》,负责人

      [3] 2021.1-2025.12,  国家自然科学基金重点项目, 《深海平台极端海况模型实验环境识别与实型预报方法研究》,参加

      [2] 2019.7-2022.6,上海市科委"科技创新行动计划,《深海矿产资源开发关键技术》,参加(课题技术负责人,高效环保型集矿系统研发)

      [1] 2015.5-2018.12,澳大利亚政府研究理事会与伍德赛德石油公司,壳牌石油公司,法国船级社和劳氏船级社等联合项目, 《极端海况下的FPSO甲板上浪机理与预报》,技术负责人


横向类项目

      [1] 2021.2-2021.7,  深水船型浮式结构物甲板上浪实验及瞬态设计波分析验证,西澳大利亚大学,负责人

      [2] 2021.7-2022.9,  深远海养殖装备立柱-网衣耦合水动力特性试验,水产科学院东海所,负责人

 


外文期刊论文(*代表通讯作者) 

[31] Zhang, X., Lu, D., Dong, H., Zhao, X.*, Brennan, F. and Liang, Y., 2022. Vibration suppression of multi-component floating structures via passive TMDs and Bayesian ascent. Ocean Engineering, 259, p.112088.

[30] Zhang, X., Zhang, H.*, Zhou, X. and Sun, Z., 2022. Recent advances in wave energy converters based on nonlinear stiffness mechanisms. Applied Mathematics and Mechanics, 43(7), pp.1081-1108.

[29] Chen, Y., Zhang, Y., Tian, X., Guo, X., Li, X. and Zhang, X.*, 2022. A numerical framework for hydroelastic analysis of a flexible floating structure under unsteady external excitations: Motion and internal force/moment. Ocean Engineering, 253, p.111288.

[28] Wang, P., Tian, X., Liang, X., Guo, X., Li, X. and Zhang, X.*, 2021. Development of the control system for a wave driven glider. Ocean Engineering, 229, p.108813.

[27] Zhang, X., Lu, D., Liang, Y.* and Brennan, F., 2021. Feasibility of very large floating structure as offshore wind foundation: effects of hinge numbers on wave loads and induced responses.

Journal of Waterway, Port, Coastal, and Ocean Engineering 147(3), p.04021002.

[26] Zhang, X.*, Tian, X., Guo, X., Li, X. and Xiao, L., 2020. Bottom step enlarging horizontal momentum flux of dam break flow. Ocean Engineering, 214, p.107729.

[25] Song, Y., Guo, X., Wang, H., Tian, X., Wei, H. and Zhang, X.*, 2020. Performance analysis of an adaptive bistable point absorber wave energy converter under white noise wave excitation. IEEE Transactions on Sustainable Energy, 12(2), pp.1090-1099.

[24] Zhang, X.*, Zheng, S., Lu, D. and Tian, X., 2019. Numerical investigation of the dynamic response and power capture performance of a VLFS with a wave energy conversion unit. Engineering Structures, 195, pp.62-83.

[23] Lu, D., Tian, X., Lu, W. and Zhang, X.*, 2019. Combined effects of raft length ratio and structural flexibility on power capture performance of an interconnected-two-raft wave energy converter. Ocean Engineering, 177, pp.12-28.

[22] Zhang, X.*, Draper, S., Wolgamot, H., Zhao, W. and Cheng, L., 2019. Eliciting features of 2D greenwater overtopping of a fixed box using modified dam break models. Applied Ocean Research, 84, pp.74-91.

[21] Zhang, X., Tian, X., Xiao, L., Li, X. and Lu, W.*, 2019. Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter. Energy, 188, p.115984.

[20] Zhang, X.*, Tian, X., Xiao, L., Li, X. and Chen, L., 2018. Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter. Applied Energy, 228, pp.450-467.

[19] Zhang, X., Lu, D., Gao, Y. and Chen, L., 2018. A time domain discrete-module-beam-bending-based hydroelasticity method for the transient response of very large floating structures under unsteady external loads. Ocean Engineering, 164, pp.332-349.

[18] Zhang, X. and Lu, D.*, 2018. An extension of a discrete-module-beam-bending-based hydroelasticity method for a flexible structure with complex geometric features. Ocean Engineering, 163, pp.22-28.

[17] Sun, Y., Lu, D., Xu, J. and Zhang, X.*, 2018. A study of hydroelastic behavior of hinged VLFS. International Journal of Naval Architecture and Ocean Engineering, 10(2), pp.170-179.

[16] Zhang, X.*, Lu, D., Guo, F., Gao, Y. and Sun, Y., 2018. The maximum wave energy conversion by two interconnected floaters: Effects of structural flexibility. Applied Ocean Research, 71, pp.34-47.

[15] Sun, Y. and Zhang, X.*, 2017. A second order analytical solution of focused wave group interacting with a vertical wall. International Journal of Naval Architecture and Ocean Engineering, 9(2), pp.160-176.

[14] Zhang, X.T., Yang, J.M. and Xiao, L.F., 2016. An oscillating wave energy converter with nonlinear snap-through Power-Take-Off systems in regular waves. China Ocean Engineering, 30(4), pp.565-580.

[13] Zhang, X., Yang, J.*, Zhao, W. and Xiao, L., 2016. Effects of Wave Excitation Force Prediction Deviations on the Discrete Control Performance of an Oscillating Wave Energy Converter. Ships and Offshore Structures, 11(4).

[12] Zhang, X.* and Yang, J., 2015. Power capture performance of an oscillating-body WEC with nonlinear snap through PTO systems in irregular waves. Applied Ocean Research, 52, pp.261-273.

[11] Chen, W., Wu, Z., Liu, J., Jin, Z., Zhang, X. and Gao, F., 2021. Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment. Energy, 220, p.119718.

[10] Zhao, Y., Gao, S., Zhang, X., Guo, X., Li, X. and Tian, X., 2021. Direct numerical simulations on the flow past a thin square plate. Physics of Fluids, 33(3), p.034128.

[9] Wang, P., Wang, D., Zhang, X., Li, X., Peng, T., Lu, H. and Tian, X., 2020. Numerical and experimental study on the maneuverability of an active propeller control based wave glider. Applied Ocean Research, 104, p.102369.

[8] Wang, D., Wang, P., Zhang, X., Guo, X., Shu, Y. and Tian, X., 2020. An obstacle avoidance strategy for the wave glider based on the improved artificial potential field and collision prediction model. Ocean Engineering, 206, p.107356.

[7] Wang, P., Zhang, X., Wang, D., Guo, X., Lu, W. and Tian, X., 2020. A restricted circle based position keeping strategy for the wave glider. Applied Ocean Research, 97, p.102081.

[6] Bi, A., Zhao, F., Zhang, X. and Ge, T., 2020. Combined Depth Control Strategy for Low-Speed and Long-Range Autonomous Underwater Vehicles. Journal of Marine Science and Engineering, 8(3), p.181.

[5] Wu, X., Zhang, X., Tian, X., Li, X. and Lu, W., 2020. A review on fluid dynamics of flapping foils. Ocean Engineering, 195, p.106712.

[4] Wang, P., Wang, D., Zhang, X., Guo, X., Li, X. and Tian, X., 2019. Path following control of the wave glider in waves and currents. Ocean Engineering, 193, p.106578.

[3] Lu, W., Li, J., Li, X., Tian, X., Wu, X. and Zhang, X., 2019. Experimental investigation on the statistics of rogue waves under a random wave background. Ocean Engineering, 186, p.106075.

[2] Lu, D., Fu, S., Zhang, X., Guo, F. and Gao, Y., 2019. A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending. Ships and Offshore Structures, 14(4), pp.354-362.

[1] Li, L., Zhang, X., Yuan, Z. and Gao, Y., 2019. Multi-stable mechanism of an oscillating-body wave energy converter. IEEE Transactions on Sustainable Energy, 11(1), pp.500-508.


中文期刊论文(*代表通讯作者)

[2] 陈永强,张宇,张显涛,2021. 基于离散模块梁单元水弹性理论的连接处建模方法. 中国舰船研究, 已接收

[1] 张显涛, 杨建民,肖龙飞, 2015. 球体波能转换装置捕获能量的理论研究. 船舶力学,4. 









《海洋可再生能源》,授课对象:本科生

《船舶与海洋工程导论》,授课对象:本科生
《Scientific Writing, Integrity and Ethics》,授课对象:研究生

《数字信号处理与工程应用》,授课对象:研究生


研究生指导:

   [12] 汪成龙,2022级硕士,波动鳍海洋机器人

   [11] 张一帆,2022级硕士,离散模块-有限元水弹性方法,膜腔式海上光伏

   [10] 毕鑫嗣,2021级硕士,深远海养殖装备

   [9] 陈诚,2021级硕士,半潜式养殖装备立柱-网衣组合结构耦合水动力分析

   [8] 陈子和,2021级博士,深远海波浪能装置高效俘能与复杂动力特性研究

   [7] 刘晨祥,2021级博士,智能仿生机器人

   [6] 张雪燕, 2020级博士,深远海养殖装备

   [5] 王瀚彬,2020级博士,深远海养殖装备

   [4] 彦祥宇,2020级硕士,波浪能

   [3] 宋旸,2020级硕士,波浪能

   [2] 陈永强, 2020级硕士,离散模块-梁单元水弹性理论及应用,海上光伏 (转博)

   [1] 张宇,2019级硕士,大型浮体越浪效应(已毕业)


[5] 一种随船浪高仪可伸缩式套筒标定装置,2022.02.11,中国,CN113418584A,(已授权,第一发明人)

[4] 自适应型双稳态浮子式波浪能发电装置及发电方法,2019.06.07,中国,CN109854434A,(实审,第一发明人)

[3] 用于海洋平台模型振荡试验的多自由度测力装置,2015.10.14,中国,CN103759872B (已授权)
[2] 均匀流下的FISHFARM浮筒分段模型水平强迫振动实验装置,2013.9.25,中国,CN102359854B(已授权)
[1] 均匀流下的FISHFARM浮筒分段模型双向强迫振动实验装置,2013.6.19,中国,CN102359856B (已授权)

2019年上海市浦江人才计划
2019年第二届上海市青少年人工智能创新大赛一等奖,获优秀指导教师奖
2019年第八届全国海洋航行器设计与制作大赛一等奖,指导老师
2019年首钢京唐杯第十二届全国大学生节能减排社会实践与科技竞赛 三等奖,指导老师
第33届水波与浮体国际研讨会Tuck Fellowship;
第31届OMAE国际会议Outreach to Engineers 资助;
澳洲政府国际研究奖学金;西澳大学-壳牌石油公司杰出研究奖学金

版权所有 © 2014 上海交通大学船舶海洋与建筑工程学院 沪交ICP备05053   流量统计