工程力学系
电子邮件:wang_liang@sjtu.edu.cn
通讯地址:上海市东川路800号 木兰船建大楼 A901
【工作经历】
2020.09 - 至今 上海交通大学,船舶海洋与建筑工程学院,长聘教轨副教授,博士生导师
2018.02 - 2020.03 美国迈阿密大学, 机械与航空工程系,博士后
2016.11 - 2017.11 新加坡南洋理工大学,机械与航空工程系,博士后
【教育经历】
2014.12 - 2015.12 美国西北大学,联合培养博士
2011.09 - 2016.06 浙江大学, 博士
2006.09 - 2010.07 天津大学, 本科
主要从事复合材料多尺度力学与先进数值计算等方面的研究。主持国家自然科学基金面上项目及青年项目,参与承担了美国国防部高级研究计划局、美国波音公司等资助项目;在 PNAS、AFM、Nano Energy、CMAME、IJNME、Comput. Struct.、IJMS、Compos. Part. B. 等高水平期刊发表SCI论文三十余篇;Google scholar 总引用1400余次;入选上海市海外高层次人才计划。目前的主要研究兴趣包括:
1. 先进复合材料与结构力学;
2. 数值计算方法(相场、近场动力学);
3. 数据驱动的优化设计与计算;
4. 软物质力学与3D/4D打印。
----------------------招生信息-----------------------
招生专业:力学、材料、机械、土木等相关专业。
招收硕士/博士研究生及博士后,欢迎条件优秀且具有浓厚科研兴趣的青年学子加盟!
期刊服务:
《Computer Modeling in Engineering & Sciences (CMES)》 副编辑
《工程设计学报》 青年编委
期刊评审:
Composite science and technology; International Journal of Applied Mechanics; Composite part-A; Mechanics Research Communications; Thin-walled structure; Advances in Applied Mathematics and Mechanics; Composite structures 等。
学会组织:
中国复合材料学会(会员)
中国力学学会(会员)
上海市力学学会(会员)
1. 国家自然科学基金青年基金项目, 复合材料三维多裂纹扩展失效的非线性增强有限元数值方法研究, 2022-01-01 至 2024-12-31, 在研, 主持。
2. Micromechanical Failure Analysis of Aligned Low-Aspect Short Fiber Composite Materials for TFF,2018-2020,美国国防部高级研究计划局(DARPA)资助,参与完成。
3. Augmented Finite Element Method for High-Fidelity Analysis of Structural Composites,2018-2019, 美国波音公司(Boeing)资助,参与完成。
4. Rolling Contact Fatigue Analysis For Predicting Crack Initiation And Propagation,2016-2017,新加坡国家研究基金会(NRF)资助,参与完成。
5. 复杂形状碳纤维复合材料承压壳的结构设计与强度研究,2013-2014,浙江大学与 Stanford University 国际合作项目,参与完成。
SCI论文(通讯作者*)
38. Su H, Wang L*, Chen B. A phase-field framework for modeling multiple cohesive fracture behaviors in laminated composite materials[J]. Composite Structures, 2024: 118458.
37. Chen B, Wang L*, Ma X, et al. Fracture modeling of curved composite shell structures using augmented finite element method [J]. Engineering Fracture Mechanics, 2024: 110332.
36. Wang Z, Zheng C, Wang L*, et al. Optimal design of composite grid/skin structures based on deep learning and Double-Double layup strategy[J]. Aerospace Science and Technology, 2024, 147: 109030.
35. Wang L, Su H, Zhou K. A phase-field model for mixed-mode cohesive fracture in fiber-reinforced composites[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116753.
34. Zhang, X., Xia, W., Wang, Y., Wang, L*., & Liu, X. Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations[J]. CMES-Computer Modeling in Engineering & Sciences, 2024, 139(3).
33. Du Y, Zhang D, Wang L, et al. Damage mechanism characterisation of plain weave ceramic matrix composites under in-plane shear using in-situ X-ray micro-CT and deep-learning-based image segmentation[J]. Journal of the European Ceramic Society, 2024, 44(1): 142-153.
32. Wei C, Lin W, Wang L, et al. Conformal Human–Machine Integration Using Highly Bending-Insensitive, Unpixelated, and Waterproof Epidermal Electronics Toward Metaverse[J]. Nano-Micro Letters, 2023, 15(1): 199.
31. C. Zheng, Z. Wang, L. Wang*, et al. Experimental and numerical study on failure behaviors of composite grid stiffeners under tensile and flexural loading[J]. Thin-Walled Structures, 2023, 185: 110637.
30. Wang Y, Nie W, Wang L, et al. Understanding the graphene-polymer interfacial mechanical behavior via coarse-grained modeling[J]. Computational Materials Science, 2023, 222: 112109.
29. Li, W., Yu, Y., Li, X., Wang, L., & Xu, J. Quantitative characterization of material uniformity and fatigue life reliability based on the initial damage discreteness[J]. International Journal of Fatigue, 2023, 167: 107382.
28. Wang Y, Niu K, Wang L, et al. A molecular dynamics study of mechanical properties of bioinspired functionally graded Cu-Ni alloy[J]. Molecular Simulation, 2022, 48(8): 662-671.
27. Xueshi Ma, Ke Xiong, Qingda Yang, Liang Wang*. Progress damage analysis and crack growth modelling in thin ply laminates using nonlinear augmented finite element method. Thin-Walled Structures, 2021,161:107433.
26. Hu C, Yang Q, Ling D, Wang L*. Numerical simulations of arbitrary evolving cracks in soil structures using the nonlinear augmented finite element method. Mechanics of materials, 2021, 156:103814.
25. Wang L, Yang Q D. Geometrically nonlinear augmented finite element method for arbitrary cracking in composite laminates[J]. Computers & Structures, 2020, 239: 106327.
24. Liao X, Wang W, Wang L, et al. A highly stretchable and deformation-insensitive bionic electronic exteroceptive neural sensor for human-machine interfaces[J]. Nano Energy, 2020: 105548.
23. Wang L, Ma X, Yang Q, et al. Nonlinear Augmented Finite Element Method (n-AFEM) for Arbitrary Cracking in Large Deformation Plates and Shells[J]. International Journal for Numerical Methods in Engineering, 2020,121:4509-4536.
22. Nygren G, Wang L, Yang Q, et al. Microstructural effects on failure modes in highly aligned short carbon fiber composites[J]. Polymer Composites, 2020, 41(10): 4288-4296.
21. Hu C, Ling D, Ren X, Gong S, Wang L, Huang Z. An improved crack-tip element treatment for advanced FEMs[J]. Theoretical and Applied Fracture Mechanics, 2020: 102587.
20. Hu C, Wang L, Ling D, et al. Experimental and Numerical Investigation on the Tensile Fracture of Compacted Clay[J]. Computer Modeling in Engineering & Sciences, 2020, 123(1): 283-307.
19. Wang L, Nygren G, Karkkainen R L, et al. A multiscale approach for virtual testing of highly aligned short carbon fiber composites[J]. Composite Structures, 2019, 230: 111462.
18. Wang L, Zhao B, Wu J, et al. Experimental and numerical investigation on mechanical behaviors of woven fabric composites under off-axial loading[J]. International Journal of Mechanical Sciences, 2018, 141: 157-167.
17. Liao X, Wang W, Wang L, et al. Controllably Enhancing Stretchability of Highly Sensitive Fiber-Based Strain Sensors for Intelligent Monitoring[J]. ACS applied materials & interfaces, 2018, 11(2): 2431-2440.
16. Wang B, Wang L*, Wu J, et al. Design and characterization of isothermal chambers filled with gradient-porous materials[J]. Journal of Thermal Science and Technology, 2017, 12(1): JTST0008-JTST0008.
15. Shin, G., Gomez, A. M., Al-Hasani, R., Jeong, Y. R., Kim, J., Xie, Z., Wang, L., et al. Flexible near-field wireless optoelectronics as subder mal implants for broad applications in optogenetics[J]. Neuron, 2017, 93(3): 509-521. e3.
14. Lee, Y. K., Jang, K. I., Ma, Y., Koh, A., Chen, H., Wang, L., et al. Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. Advanced Functional Materials, 27(9):1605476.1-1605476.8, 2017.
13. Wang L, Wu J, Chen C, et al. Progressive failure analysis of 2D woven composites at the meso-micro scale[J]. Composite Structures, 2017, 178: 395-405.
12. Yinji Ma, Matt Pharr, Liang Wang, Jeonghyun Kim, Yuhao Liu, Yeguang Xue, Rui Ning, Xiufeng Wang, Ha Uk Chung, Xue Feng, John A. Rogers, and Yonggang Huang. Soft elastomers with ionic liquid-filled cavities as strain isolating substrates for wearable electronics. Small, 13(9):1602954, 2017.
11. Wang L, Wang B, Wei S, et al. Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure[J]. Composites Part B: Engineering, 2016, 97: 274-281.
10. Koh, A., Kang, D., Xue, Y., Lee, S., Pielak, R. M., Kim, J., Wang, L., et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 8(366):366ra165-366ra165, 2016.
9. Ma Y, Jang K I, Wang L, et al. Design of Strain Limiting Substrate Materials for Stretchable and Flexible Electronics. Advanced Functional Materials, 26(29):5345-5351, 2016.
8. Wang L, Zheng C, Wei S, et al. Micromechanics-based progressive failure analysis of carbon fiber/epoxy composite vessel under combined internal pressure and thermomechanical loading[J]. Composites Part B: Engineering, 2016, 89: 77-84.
7. Yihui Zhang, Zheng Yan, Kewang Nan, Dongqing Xiao, Yuhao Liu, Haiwen Luan, Haoran Fu, Xizhu Wang, Qinglin Yang, Jiechen Wang, Liang Wang, Yonggang Huang, and John A. Rogers. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. (PNAS) Proceedings of the National Academy of Sciences USA, 112(38): 11757-11764, 2015.
6. Wang L, Zheng C, Luo H, et al. Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel[J]. Composite Structures, 2015, 134: 475-482.
5. Wang B, Hong Y, Wang L, et al. Development and numerical investigation of novel gradient-porous heat sinks. Energy Conversion & Management, 106:1370-1378, 2015.
4. Wang L, Zheng C, Wei S, et al. Thermo-mechanical investigation of composite high-pressure hydrogen storage cylinder during fast filling[J]. International Journal of Hydrogen Energy, 2015, 40(21): 6853-6859.
3. Li R, Zheng C, Chen B, Wang L, et al. Research on hydrogen environment fatigue test system and correlative fatigue test of hydrogen storage vessel. Journal of Shanghai Jiaotong University, 19: 88-94, 2014.
2. Wang L, Zheng C, Li R, et al. Numerical analysis of temperature rise within 70 MPa composite hydrogen vehicle cylinder during fast refueling[J]. Journal of Central South University, 2014, 21(7): 2772-2778.
1. Zheng C, Wang L*, Li R, et al. Fatigue test of carbon epoxy composite high pressure hydrogen storage vessel under hydrogen environment[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(6): 393-400.
《计算固体力学与程序设计》,64学时
《高等计算固体力学》,42学时